Onion maggot management in fresh-market onion

Last updated January 2016

Brian A. Nault
Professor

Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY
Onion Production in New York

- Fresh-market acreage ranks 6th in the US (8,500 acres [5-yr average])
- Value of crop $36 million (5-yr average)
- Cultivars mature in 90 to 120 days
- Planted in April and May and harvested from July to September
- Sold immediately or stored and sold later

USDA NASS (2015)
Onion Production in Muck Soils in New York
Onion Maggot
(Delia antiqua Meigen)

- Overwinters in NY as a pupa in soil
- Adults emerge in late April and May
- Three generations per year
- First-generation maggots cause the most damage
First-generation larvae are most destructive
Cultural and chemical control effective

Onion maggot in onion

Plant Resistance

Chemical Control

Behavioral Control

Cultural Control

Biological Control

Martinson et al. (1988); Nault et al. (2006)
Effective Onion Maggot Management Options

Cultural Control
- Crop rotation (difficult on muck)
- Precautions at harvest
- Sanitation

Chemical Control
- Insecticide at planting
 - FarMore Fl500
 - Trigard + chlorpyrifos drench (e.g., Lorsban)
 - Sepresto*

* low pressure situations
Onion rotation rarely occurs in New York

Elba Muck

- Muck land is a relatively small, finite area
- Growers maximize area planted with onions
Chemical control is principal tactic

Onion maggot in onion

Chemical Control

Plant Resistance

Behavioral Control

Cultural Control

Biological Control

Nault et al. (2006)
Insecticides Registered on Onion for Onion Maggot Control in NY

<table>
<thead>
<tr>
<th>Trade Name</th>
<th>Company</th>
<th>Active Ingredient</th>
<th>Class (IRAC(^2) group)</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lorsban Advanced and OLF(^1)</td>
<td>Dow Agro-Sciences and others</td>
<td>chlorpyrifos</td>
<td>OP (1)</td>
<td>At planting in-furrow, or Post-plant band</td>
</tr>
<tr>
<td>Diazinon AG500 and OLF(^1)</td>
<td>Makhteshim</td>
<td>diazinon</td>
<td>OP (1)</td>
<td>Pre-plant broadcast & incorporate</td>
</tr>
<tr>
<td>Trigard OMC</td>
<td>Syngenta</td>
<td>cyromazine</td>
<td>Triazine (17)</td>
<td>Seed treatment</td>
</tr>
<tr>
<td>Sepresto</td>
<td>Bayer CropScience</td>
<td>clothianidin + imidacloprid</td>
<td>Neonicotinoid (4) + Neonicotinoid (4)</td>
<td>Seed treatment</td>
</tr>
<tr>
<td>FarMore F1500</td>
<td>Syngenta</td>
<td>thiamethoxam + spinosad</td>
<td>Neonicotinoid (4) + Spinosyn (5)</td>
<td>Seed treatment</td>
</tr>
<tr>
<td>FarMore OI100</td>
<td>Syngenta</td>
<td>spinosad</td>
<td>Spinosyn (5)</td>
<td>Seed treatment</td>
</tr>
</tbody>
</table>

\(^1\)OLF: other labeled formulation. \(^2\)IRAC: Insecticide resistance action committee
Insecticides for onion maggot

Type of Application

<table>
<thead>
<tr>
<th>In-furrow</th>
<th>Seed treatment</th>
</tr>
</thead>
</table>

chlorpyrifos (Lorsban) = industry standard
Insecticides for onion maggot

<table>
<thead>
<tr>
<th>Type of Application</th>
<th>Chlorpyrifos</th>
<th>Cyromazine</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-furrow</td>
<td>(Lorsban)</td>
<td>(Trigard)</td>
</tr>
<tr>
<td>Seed treatment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

85% reduction in a.i. per acre compared with Lorsban drench!
Insecticides for onion maggot

- **Type of Application**
 - **In-furrow**
 - **Seed treatment**

- **In-furrow**: Seed treatment

- **chlorpyrifos** (Lorsban)
- **cyromazine** (Trigard)
- **chlorpyrifos + cyromazine** (Lorsban + Trigard) = industry standard

Insecticides for onion maggots

Type of Application

- In-furrow
- Seed treatment

- chlorpyrifos (Lorsban)
- cyromazine (Trigard)
- chlorpyrifos + cyromazine (Lorsban + Trigard)
- spinosad + thiamethoxam (FarMore F1500)

Year

- 1980
- 1985
- 1990
- 1995
- 2000
- 2005
- 2010
- 2015
Onion maggot control in onion using insecticides

Sodus, NY 2012 (n = 4)

Mean % plants killed by maggots

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean % plants killed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>*</td>
</tr>
<tr>
<td>Lorsban</td>
<td>a</td>
</tr>
<tr>
<td>FarMore</td>
<td>ab</td>
</tr>
<tr>
<td>FarMore + Lorsban</td>
<td>b</td>
</tr>
</tbody>
</table>

F = 7.67; df = 2, 8; P = 0.0138

Cornell University
College of Agriculture and Life Sciences
Onion maggot control in onion using insecticides

Sodus, NY 2012 (n = 4)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean % plants killed by maggots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>*</td>
</tr>
<tr>
<td>Lorsban</td>
<td>a</td>
</tr>
<tr>
<td>FarMore</td>
<td>ab</td>
</tr>
<tr>
<td>FarMore + Lorsban</td>
<td>b</td>
</tr>
</tbody>
</table>

53% reduction

$F = 7.67; \text{df} = 2, 8; P = 0.0138$
Onion maggot control in onion using insecticides

Sodus, NY 2013 (n = 4)

Mean % plants killed by maggots

- Untreated: *
- Lorsban: a
- FarMore: b
- FarMore + Lorsban: b

F = 10.45; df = 2, 8; P = 0.0059
Onion maggot control in onion using insecticides

Sodus, NY 2013 (n = 4)

Mean % plants killed by maggots

Untreated

Lorsban

FarMore

FarMore + Lorsban

23% reduction

\(F = 10.45; \text{ df} = 2, 8; P = 0.0059 \)
Insecticides for Onion Maggot Control

➢ FarMore F1500 is effective; inclusion of chlorpyrifos not necessary unless high pressure expected

➢ Trigard OMC is effective, but not consistent; inclusion of chlorpyrifos not necessary unless high pressure expected

➢ Sepresto has not been very effective; inclusion of chlorpyrifos does not seem to improve control

➢ Lorsban Advanced or OLF alone is not very effective

➢ Diazinon AG500 or OLF efficacy is not known
Anually rotate insecticides to mitigate resistance in onion maggot.

* Only 1 of 6 generations will be exposed to the same insecticide in 2 yrs.
Onion maggot insecticide resistance management

- Adding Lorsban to the FarMore Fl500 package did not significantly improve control; however, may be worthwhile including if maggot pressure is high.

- Consider annually rotating seed treatment packages.

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>FarMore Fl500</td>
<td>Trigard + Lorsban</td>
<td>FarMore Fl500</td>
<td>Trigard + Lorsban</td>
</tr>
</tbody>
</table>
Future management
Onion maggot in onion

▪ Challenges
 ➢ Lack of crop rotation
 ➢ Chlorpyrifos is inexpensive (EPA to revoke tolerances)

▪ Potential Solutions
 ▪ Use sterile male release (Fournier unpublished)
 ▪ Delay planting (Nault et al. 2011)
 ▪ Avoid chlorpyrifos use in low risk fields