

OUTLINE

- Define cole crops
- Common pests of cole crops
- > Identification of pests
- Management of pests

OUTLINE

- ➤ Define cole crops
- ➤ Common pests of cole crops
- >Identification of pests
- >Management of pests

WHAT IS A COLE CROP?

- •A lot of variation in what is considered cole crop:
 - kale, collards, kohlrabi, cabbage, Brussels sprouts, broccoli, cauliflower, Chinese broccoli, Chinese cabbage, Chinese mustard, oriental, radish, mustard, and turnips

WHAT IS A COLE CROP?

- •A lot of variation in what is considered cole crop:
 - kale, collards, kohlrabi, cabbage, Brussels sprouts, broccoli, cauliflower, Chinese broccoli, Chinese cabbage, Chinese mustard, oriental, radish, mustard, and turnips
- •All members of cole crop family are usually of the same species:
 - Brassica oleracea

NEW YORK STATE CABBAGE STATISTICS, 2019

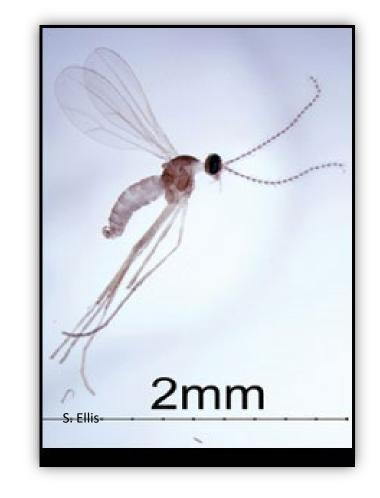
- 11,700 acres harvested
- •\$82 million

Quick Stats

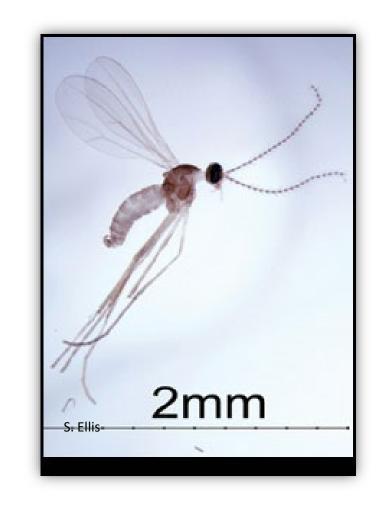
OUTLINE

- > Define cole crops
- Common pests of cole crops
- >Identification of pests
- >Management of pests

Cabbage maggot (Delia radicum)



- Cabbage maggot (Delia radicum)
 - Time of concern: at planting (May-June)



- Cabbage maggot
- Swede midge (Contarinia nasturtii)

- Cabbage maggot
- •Swede midge (Contarinia nasturtii)
 - •Time of concern: few weeks after planting (June-September)

- Cabbage maggot
- Swede midge
- Onion thrips (Thrips tabaci)

- Cabbage maggot
- Swede midge
- Onion thrips (Thrips tabaci)
 - •Time of concern: head formation through harvest (August-September)

Worm pests of cole crops:

- •Worm pests of cole crops:
 - Imported cabbage worm (ICW)

(Pieris rapae)

- •Worm pests of cole crops:
 - Imported cabbage worm (ICW)

(Pieris rapae)

•Time of concern:

June through August

- •Worm pests of cole crops:
 - Imported cabbage worm (ICW)

(Pieris rapae)

•Time of concern:

June through August

- Worm pests of cole crops:
 - Imported cabbage worm (ICW)
 - **-Cabbage looper (CL)** (*Trichoplusia ni*)

- Worm pests of cole crops:
 - Imported cabbage worm (ICW)
 - **-Cabbage looper (CL)** (*Trichoplusia ni*)
 - •Time of concern: migrate from south, August-September

- Worm pests:
 - Imported cabbage worm(ICW)
 - Cabbage looper (CL)
 - •Diamondback moth (DBM) (Plutella xylostella)

- Worm pests:
 - Imported cabbage worm (ICW)
 - Cabbage looper (CL)
 - •Diamondback moth (DBM) (Plutella xylostella)
 - Time for concern: May-September

OUTLINE

- > Define cole crops
- >Common pests of cole crops
- > Identification of pests
- >Management of pests

Pupae: overwinters in soil

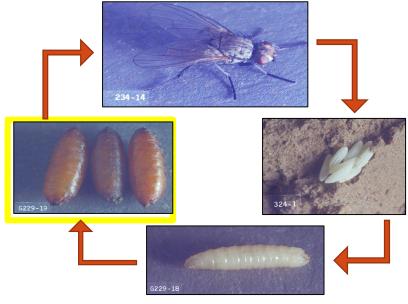


Photo credits: Ken Gray

Pupae: overwinters in soil

-Adults: emerge in spring

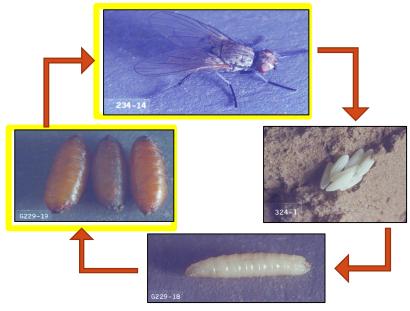


Photo credits: Ken Gray

- Pupae: overwinters in soil
- Adults: emerge in spring
- Eggs: laid at base of cole crop plants

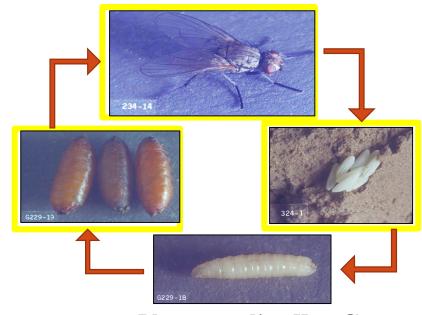


Photo credits: Ken Gray

- Pupae: overwinters in soil
- Adults: emerge in spring
- Eggs: laid at base of cole crop plants
- Larvae: develop on or near base of plant

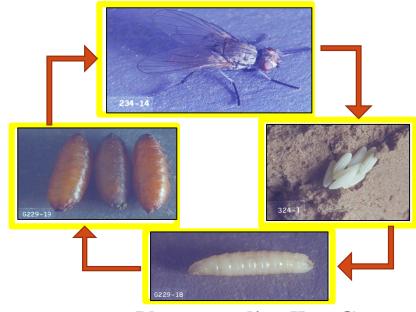
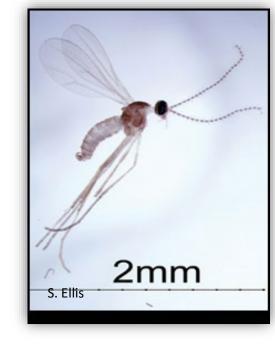
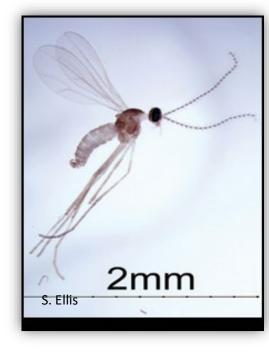


Photo credits: Ken Gray

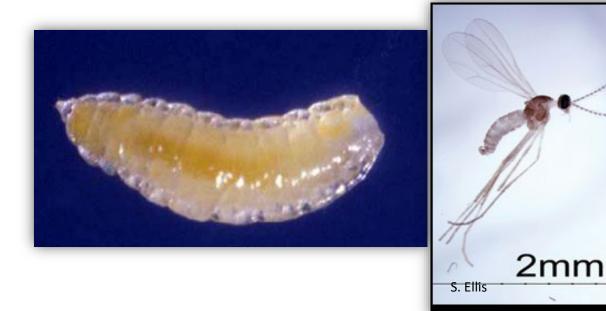
- Pupae: overwinters in soil
- Adults: emerge in spring
- Eggs: laid at base of cole crop plants
- Larvae: develop on or near base of plant
- Damage: Wilting and reduced vigor



•Adults: tiny light brown flies, midge-like



- •Adults: tiny light brown flies, midge-like
- **Eggs**: microscopic



- -Adults: tiny light brown flies, midgelike
- **Eggs**: microscopic
- **Larvae**: small maggots, 3-4 mm

- •Adults: tiny light brown flies, midge-like
- **Eggs**: microscopic
- **Larvae**: small maggots, 3-4 mm
- Pupae: 1-2 mm, soil

- •Adults: tiny light brown flies, midgelike
- **Eggs**: microscopic
- **Larvae**: small maggots, 3-4 mm
- Pupae: 1-2 mm, soil
- Damage: leaf galling and distortion

IDENTIFICATION: ONION THREPS

-Adult: tan-brown, fast

IDENTIFICATION: ONION THRIPS

Adult: tan-brown, fast

Eggs: microscopic

IDENTIFICATION: ONION THREPS

-Adult: tan-brown, fast

Eggs: microscopic

Larvae: 2 instars on

plant

IDENTIFICATION: ONION THRIPS

Adult: tan-brown, fast

Eggs: microscopic

Larvae: 2 instars on plant

Pupae: 2 stages in soil

IDENTIFICATION: ONION THRIPS

Adult: tan-brown, fast

Eggs: microscopic

Larvae: 2 instars on plant

Pupae: 2 stages in soil

Damage: bronzing on

leaves

Missouri Botanical Garden

Adults: white butterfly

Adults: white butterfly

• Eggs: bullet-shaped,

0.5 mm

Adults: white butterfly

Eggs: bullet-shaped,0.5 mm

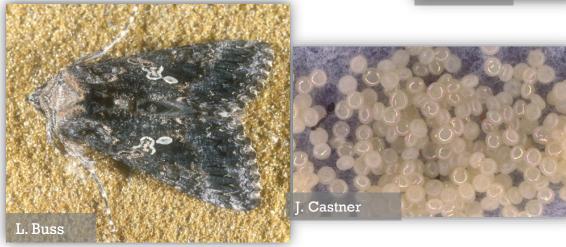
Larvae: sluggish, velvety

- Adults: white butterfly
- Eggs: bullet-shaped,0.5 mm
- Larvae: sluggish, velvety
- Pupae: sharply angled chrysalis

- Adults: white butterfly
- **Eggs**: bullet-shaped, 0.5 mm
- **Larvae**: sluggish, velvety
- Pupae: sharply angled chrysalis
- Damage: complete defoliation leaving stems and veins

 Adults: brown moth with silver figure 8 in middle of wing

- Adults: brown moth with silver figure 8 in middle of wing
- Eggs: hemispherical,0.6 mm



- Adults: brown moth with silver figure 8 in middle of wing
- Eggs: hemispherical,0.6 mm
- Larvae: make loop when prodded

- Adults: brown moth with silver figure 8 in middle of wing
- Eggs: hemispherical,0.6 mm
- Larvae: make loop when prodded
- Pupae: loose silk cocoon, dark brown larva

- Adults: brown moth with silver figure 8 in middle of wing
- Eggs: hemispherical,0.6 mm
- Larvae: make loop when prodded
- Pupae: loose silk cocoon, dark brown larva
- Damage: not as destructive, wrapper leaves and head

Adults: diamond pattern on wings

- Adults: diamond pattern on wings
- **Eggs**: oval, flattened, 0.4 mm

- Adults: diamond pattern on wings
- **Eggs**: oval, flattened, 0.4 mm
- **Larvae**: wriggle rapidly, suspend from silks, smallest

- Adults: diamond pattern on wings
- **Eggs**: oval, flattened, 0.4 mm
- **Larvae**: wriggle rapidly, suspend from silks, smallest
- Pupae: encased in loose silk cocoon, yellowish larva

- Adults: diamond pattern on wings
- **Eggs**: oval, flattened, 0.4 mm
- Larvae: wriggle rapidly, suspend from silks, smallest
- Pupae: encased in loose silk cocoon, yellowish larva
- Damage: window-paning

PESTS:

2.

3.

New York State Agricultural **Experiment Station**

PESTS: ANSWERS

1.

2.

3.

PESTS: ANSWERS

2.

Cabbage looper

New York State Agricultural **Experiment Station**

PESTS: ANSWERS

1.

Cabbage looper

Imported cabbage worm

PESTS: ANSWERS

1.

Cabbage looper

Imported cabbage worm

Cabbage looper

PESTS: ANSWERS

1.

Cabbage looper

2.

Imported cabbage worm

Cabbage looper

4.

Diamondback moth

New York State Agricultural Experiment Station

IDENTIFICATION OF WORMS BY DAMAGE

1

2.

IDENTIFICATION OF WORMS BY DAMAGE: ANSWERS

1.

2.

IDENTIFICATION OF WORMS BY DAWAGE: ANSWERS

1.

Diamondback moth

2.

IDENTIFICATION OF WORMS BY DAMAGE: ANSWERS

1

Diamondback moth

2.

Imported cabbage worm

IDENTIFICATION OF WORMS BY DAMAGE: ANSWERS

1

Diamondback moth

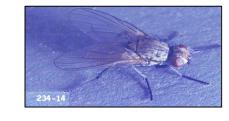
2.

Imported cabbage worm

SLUGS!!

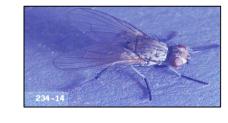
OUTLINE

- >Define cole crops
- ➤ Common pests of cole crops
- >Identification of pests
- Management of pests


MANAGEMENT: CABBAGE MAGGOT

Product	Active Ingedient	IRAC group
Diazinon AG500	Diazinon	1B- organophosphate
Capture LFR	Bifenthrin	3A-pyrethroid
Verimark	cyantraniliprole	28-diamide
Coragen SC	chlorantraniliprole	28-diamide
Entrust SC	spinosad	5-spinosyn
Radiant	spinetoram	5-spinosyn

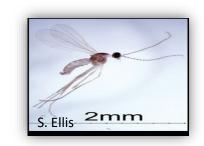
MANAGEMENT: CABBAGE MAGGOT


Product	Active Ingedient	IRAC group	
Diazinon AG500	Diazinon	1B- organophosphate	
Capture LFR	Bifenthrin	3A-pyrethroid	
Verimark	cyantraniliprole	28-diamide	
Coragen SC	chlorantraniliprole	28-diamide	
Entrust SC	spinosad	5-spinosyn	
Radiant	spinetoram	5-spinosyn	

*Suppression only

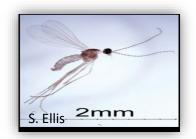
MANAGEMENT: CABBAGE MAGGOT

Product	Active Ingedient	IRAC group
Diazinon AG500	Diazinon	1B-
		organophosphate
Capture LFR	Bifenthrin	3A-pyrethroid
Verimark	cyantraniliprole	28-diamide
Coragen SC	chlorantraniliprole	28-diamide
Entrust SC	spinosad	5-spinosyn
Radiant	spinetoram	5-spinosyn


Other tactics:

- Avoid animal and green manure
- Crop rotation
- Row cover

*Suppression only


MANAGEMENT: SWEDE MIDGE

Product	Active Ingredient	IRAC Group
Assail 30SG	acetamiprid	4A-neonicotinoid
Admire Pro	imidacloprid	4A-neonicotinoid
Warrior II w/ Zeon Tech	lambda-cyhalothrin	3A-pyrethroid
Movento	spirotetramat	23-tetronic and tetramic acid deriv.

MANAGEMENT: SWEDE MIDGE

Prevent population build-up

MANAGEMENT: SWEDE MIDGE

- Prevent population build-up
 - Transplants SM free
 - Pheromone traps, monitor SM populations
 - Exclusion netting
 - Post-harvest culling
 - Crop rotation

MANAGEMENT: ONION THRIPS

Product	Active Ingredient	IRAC Group
Asana XL	esfenvalerate	3A-pyrethroid
Baythroid XL	beta-cyfluthrin	3A-pyrethroid
Hero	bifenthrin + zeta-cypermethrin	3A-pyrethroid
Mustang MAXX	zeta-cypermethrin	3A-pyrethroid
Warrior II w/ Zeon Tech	lambda-cyhalothrin	3A-pyrethroid
Admire Pro	imidacloprid	4A-neonicotinoid
Assail 30 SG	acetamiprid	4A-neonicotinoid
Platinum 75 SG	thiamethoxam	4A-neonicotinoid
Endigo ZC	lambda-cyhalothrin + thiamethoxam	3A-pyrethroid 4A-neonicotinoid
Leverage 2.7	imidacloprid+cyfluthrin	4A-neonicotinoid 3A-pyrethroid
Entrust SC	spinosad	5- spinosyn
Radiant SC	spinetoram	5 - spinosyn
Movento	spirotetramat	23-tetronic and tetramic acid deriv.
Exirel	cyantraniliprole	28- diamide

MANAGEMENT: ONION THRIPS

Product	Active Ingredient	IRAC Group		
Asana XL	esfenvalerate	3A-pyrethroid		
Baythroid XL	beta-cyfluthrin	3A-pyrethroid		
Hero	bifenthrin + zeta-cypermethrin	3A-pyrethroid		
Mustang MAXX	zeta-cypermethrin	3A-pyrethroid		
Warrior II w/ Zeon Tech	lambda-cyhalothrin	3A-pyrethroid		
Admire Pro	imidacloprid	4A-neonicotinoid		
Assail 30 SG	acetamiprid	4A-neonicotinoid		
Platinum 75 SG	thiamethoxam	4A-neonicotinoid		
Endigo ZC	lambda-cyhalothrin + thiamethoxam	3A-pyrethroid 4A-neonicotinoid		
Leverage 2.7	imidacloprid+cyfluthrin	4A-neonicotinoid 3A-pyrethroid		
Entrust SC	spinosad	5- spinosyn		
Radiant SC	spinetoram	5 - spinosyn		
Movento	spirotetramat	23-tetronic and tetramic acid deriv.		
Exirel	cyantraniliprole	28- diamide		

MANAGEMENT: ONION THRIPS

Product	Active Ingredient	IRAC Group			
Asana XL	esfenvalerate	3A-pyrethroid			
Baythroid XL	beta-cyfluthrin	3A-pyrethroid			
Hero	bifenthrin + zeta-cypermethrin	3A-pyrethroid			
Mustang MAXX	zeta-cypermethrin	3A-pyrethroid			
Warrior II w/ Zeon Tech	lambda-cyhalothrin	3A-pyrethroid			
Admire Pro	imidacloprid	4A-neonicotinoid			
Assail 30 SG	acetamiprid	4A-neonicotinoid			
Platinum 75 SG	thiamethoxam	4A-neonicotinoid			
Endigo ZC	lambda-cyhalothrin + thiamethoxam	3A-pyrethroid 4A-neonicotinoid			
Leverage 2.7	imidacloprid+cyfluthrin	4A-neonicotinoid 3A-pyrethroid			
Entrust SC	spinosad	5- spinosyn			
Radiant SC	spinetoram	5 - spinosyn			
Movento	spirotetramat	23-tetronic and tetramic acid deriv.			
Exirel	cyantraniliprole	28- diamide			

- Other options:
 - Tolerant varieties
 - Natural enemies
 - Aware of nearby alternate host crops

New York State Agricultural Experiment Station

CornellAgriTech

New York State Agricultural Experiment Station

CornellAgriTech

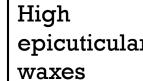
New York State Agricultural Experiment Station

CHEMICAL MANAGEMENT: CORNELL GUIDELINES

A		
V		
	-	

Product	Active Ingredient	IRAC Group			
Lannate LV	methomyl	1A – carbamate			
Baythroid XL	beta-cyfluthrin	3A -pyrethroid			
Hero	bifenthrin + zeta-cypermethrin	3A -pyrethroid			
Mustang MAXX	zeta-cypermethrin	3A -pyrethroid			
Perm-Up	permethrin	3A -pyrethroid			
Warrior II Zeon Technology	lambda-cyhalothrin	3A - pyrethroid			
Endigo ZC	lambda-cyhalothrin + thiamethoxam	3A -pyrethroid 4A -neonicotinoid			
Besiege	chlorantraniliprole + lambda-cyhalothrin	28 - diamide 3A - pyrethroid			
Entrust SC	spinosad	5 - spinosyn			
Radiant SC	spinetoram	5 - spinosyn			
Proclaim	emamectin benzoate	6 - avermectin			
Biobit HP/ Dipel DF/ Javelin	Bacillus thuringinesis var. kurstaki	11A-Bt proteins			
XenTari/ Agree WG	Bacillus thuringinesis var. aizawai	11A -Bt proteins			
Avaunt	indoxacarb	22A - oxadiazin			
Coragen	chlorantraniliprole	28 - diamide			
Exirel	cyantraniliprole	28- diamide			

HOST PLANT RESISTANCE


Glossy wax genotypes resistant

Low epicuticular waxes

epicuticular waxes

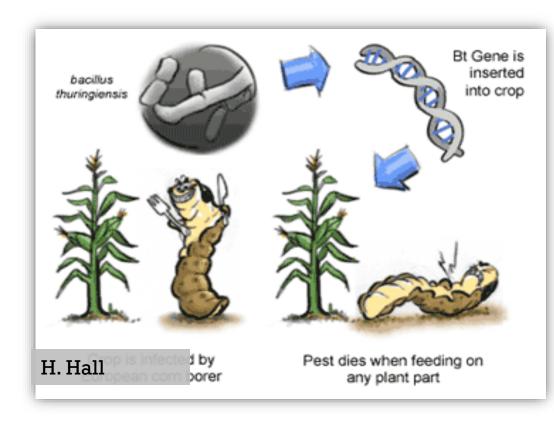
HOST PLANT RESISTANCE

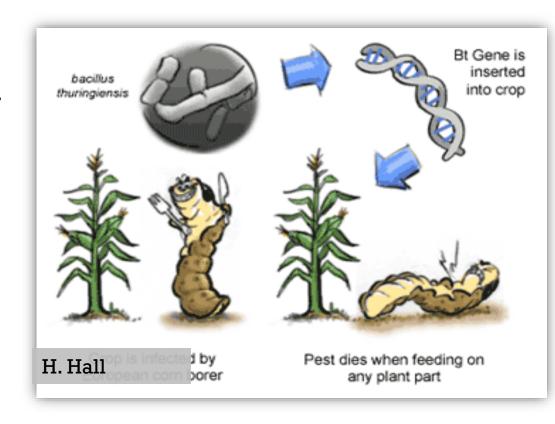
- Glossy wax genotypes resistant
 - Low epicuticular waxes
 - Low larval survival

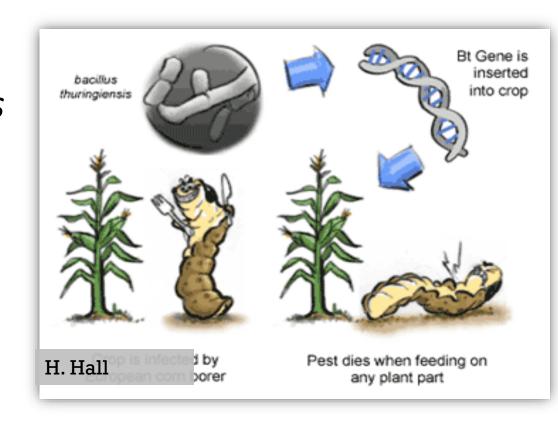
Low epicuticular waxes

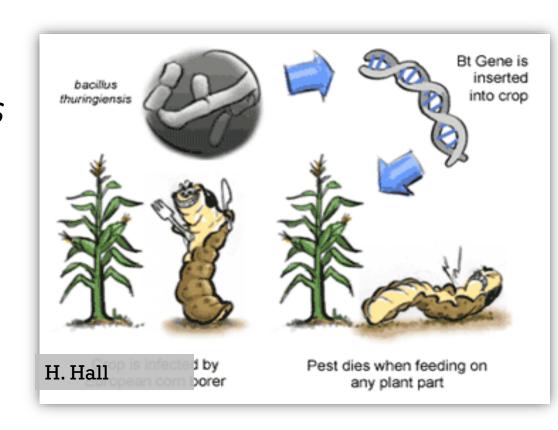
Resistance

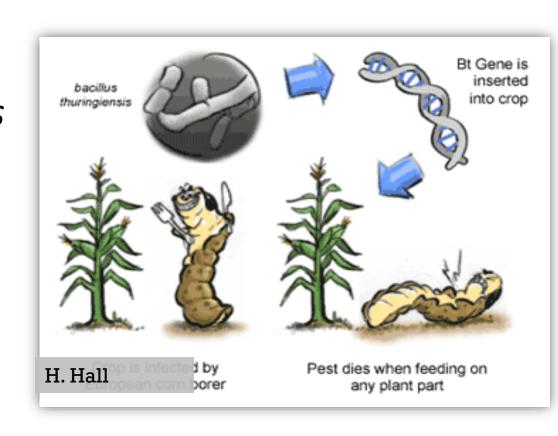
High epicuticular waxes

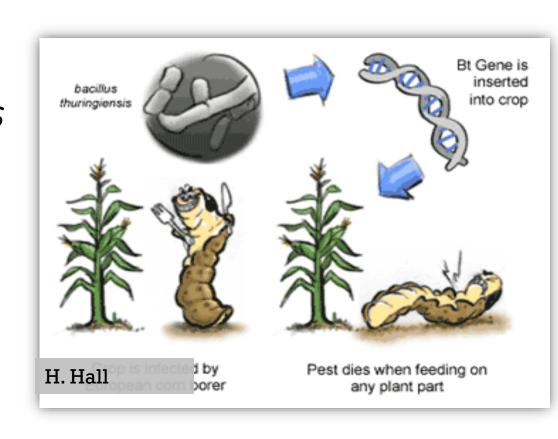



1. Insertion of gene into host plant that encodes for protein

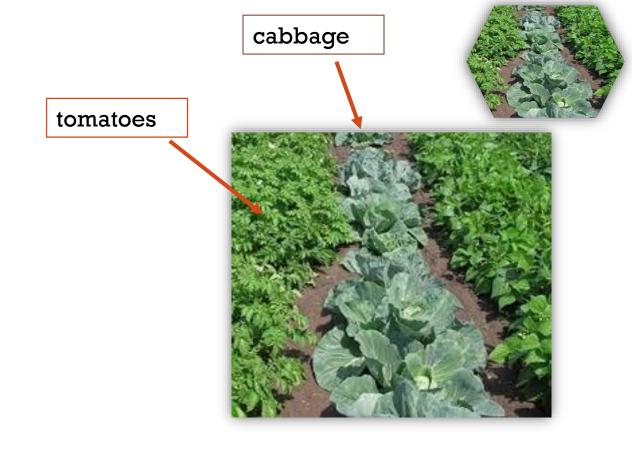

- 1. Insertion of gene into host plant that encodes for protein
- 2. Protein product *Bacillus thuringiensis* (*Bt*)


- 1. Insertion of gene into host plant that encodes for protein
- 2. Protein product *Bacillus thuringiensis* (*Bt*)
- 3. Selectively toxic to lepidopterans

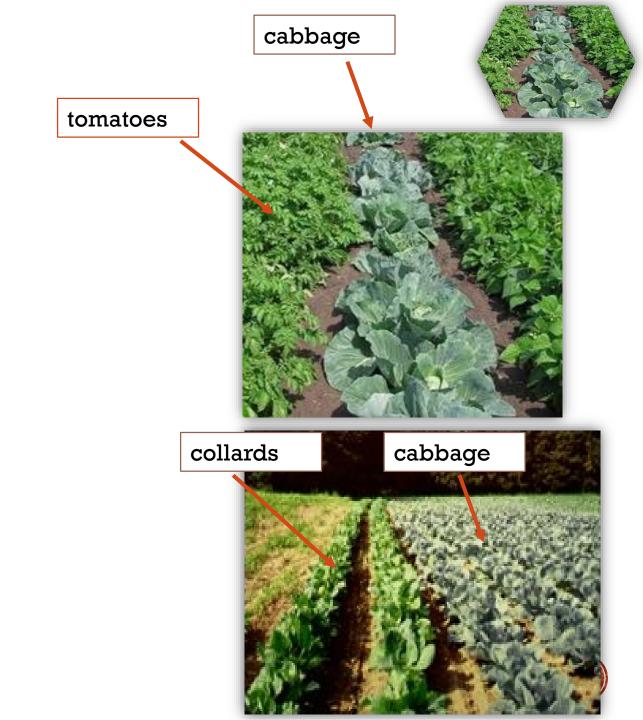

- 1. Insertion of gene into host plant that encodes for protein
- 2. Protein product *Bacillus thuringiensis* (*Bt*)
- 3. Selectively toxic to lepidopterans
- 4. Kills larvae when it feeds on plant


- 1. Insertion of gene into host plant that encodes for protein
- 2. Protein product *Bacillus thuringiensis* (*Bt*)
- 3. Selectively toxic to lepidopterans
- 4. Kills larvae when it feeds on plant
- 5. Not registered in US, high potential

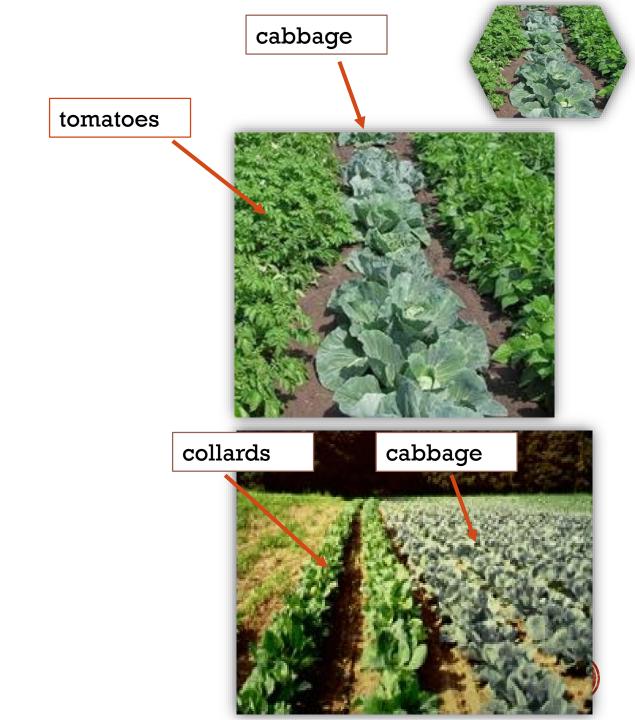
- 1. Insertion of gene into host plant that encodes for protein
- 2. Protein product *Bacillus thuringiensis* (*Bt*)
- 3. Selectively toxic to lepidopterans
- 4. Kills larvae when it feeds on plant
- 5. Not registered in US, high potential
 - Control Bt eggplants in Bangladesh

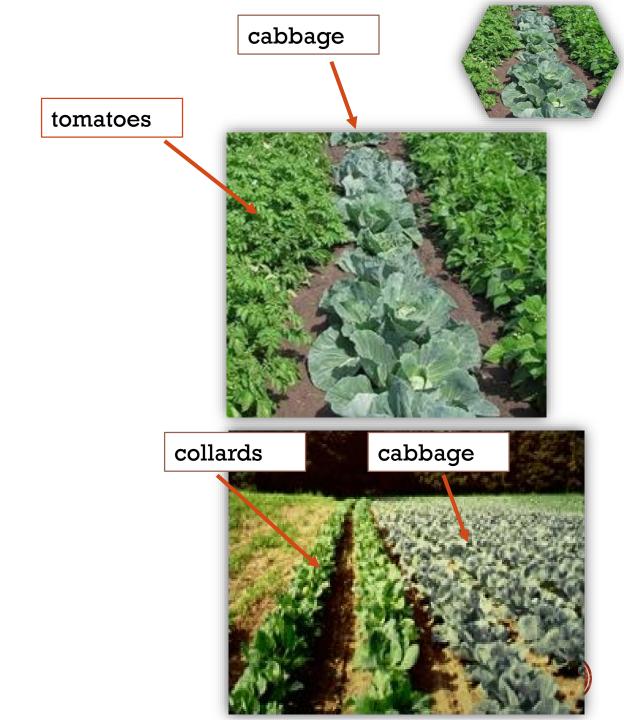


Experiment Station



•Intercropping




- •Intercropping
- Trap cropping

- •Intercropping
- Trap cropping
- •Limitations:

- •Intercropping
- Trap cropping
- •Limitations:
 - Only small diversified
 - timing

Natural enemy conservation

- Natural enemy conservation
 - Avoid use broad spectrum insecticides

- Natural enemy conservation
 - Avoid use broad spectrum insecticides
- Parasitic wasps

- Natural enemy conservation
 - Avoid use broad spectrum insecticides
- Parasitic wasps
- Vespid wasps

- Natural enemy conservation
 - Avoid use broad spectrum insecticides
- Parasitic wasps
- Vespid wasps
- Ground beetles

 ICW and CL are generally more susceptible to insecticides

- ICW and CL are generally more susceptible to insecticides
- •DBM is the hardest to control

- ICW and CL are generally more susceptible to insecticides
- •DBM is the hardest to control
 - Resistant to numerous classes insecticides

- ICW and CL are generally more susceptible to insecticides
- •DBM is the hardest to control
 - Resistant to numerous classes insecticides
 - Multiple generations

IPM PROGRAM FOR COLE CROP CRITTERS

Typical growing season

Month	At Plantin g	lantin July					August					September			October			
Week		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
DBM	Generation 1				Generation 2					Generation 3								

Typical growing season

October

15

Month	At Planting July				August				September				Octo			
Week		1	2	3	4	5	6	7	8	9	10	11	12	13	14	
DBM	Ge		Generation 2						Gen	erat	ion 3					
MOA	MOA 1															
Insecticide App		Spray Spray														
IRAC	28	1	1 A	11	A											
Trade name	Verimark	Хе	gree, entari, Dipel	Xen	ree, tari, pel											
Pests	CM, DBM		CW, mCL	ICW,	smCL											

Typical growing season

October

14

15

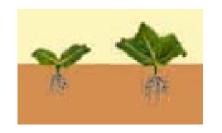
16

13

12

Month	At Plantin g		Ju	ly		August Se					eptember				
Week		1	2	3	4	5	6	7	8	9	10	11	1		
DBM	G	ene	rati	on 1			Gen								
MOA		M	OA	1			IV								
Insectici de App		Sp	ray l	Spr	ay 2	Spra	ay 3	S _]	pray	4					
IRAC	28	1	1 A	11	l A	Ę	5		5						
Trade name	Verimarl	Xer	ree, ntari, ipel	Xen	ree, tari, pel	Rad	iant	R	adia	nt					
Other Control	CM, DBM	11	CW, nCL	ICW,	smCL		, CL, ips	ICW	, CL, th	rips					

Typical growing season



Month	At Plantin	g	Jτ	ıl y		August				S	September				October			
Week		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
DBM	Generation 1					Generation 2					Generation 3							
MOA		M	1			IV	IOA	2				N	IOA	3				
Insectici de App		Spra	ay l	Spra	ay 2	Spr	ay 3	S	pray	oray 4 Spray 5				Spray 6				
IRAC	28	11	A	11	.A	5 5			6			6						
Trade name	Verim ark	Agr Xent Dip	tari,		ree, tari, pel	Rad	Radiant Radiant		Proclaim			Proclai		laim				
Other Control	CM, DBM	ICW, s	smCL	ICW,	smCL	ICW, CL, thrips		ICW, CL, thrips		rips	ICW, CL			ICW	, CL			

Difficult growing season

Month	At Plantin g	itin July				August S				S	eptember			October			
Week		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
DBM	Generation 1					Generation 2					Generation 3						

Difficult growing season

5

6

August

7

8

9

September

11

10

12

13

October

14

15

Month	Planting July													
Week		1	1 2		•	4								
DBM		Generation 1												
MOA	I	MOA 1 MOA 2												
Insectici de App		Spra	ay	Spray 2	Spray 3	Spray 4								
IRAC	28	112	A	11A	5	5								
Trade name	Verimark	Agre Xenta Dipe	ıri, 🛮 🗵	Agree, Kentari, Dipel	Radiant	Radiant								
Other Control	CM, DBM	ICW smC	·	ICW, smCL	ICW, CL, OT	ICW, CL, OT								

Difficult growing season

13

12

October

14

15

Month	At Planting		Ju	ly			A	ugust		S	epte	eptember					
Week		1	2	3	4	5	6	7	8	9	10	11	1				
DBM	G	enei	ratio	n l		Generation 2 & 3?											
MOA	MOA 1				OA 2		OA 3	MOA 4									
Insectici de App		Spray 1	Spray 2	Spray 3	Spray 4	Spray 5	Spray 6	Spray 7	Spray 8								
IRAC	28	11A	11A	5	5	6	6	28	28		28						
Trade name	Verimark		Agree, Xentar i, Dipel	Radia nt	Radia nt	Proclai m	Proclai m	Coragen Beseige (+3A) Exirel	Coragen Beseige (+3A) Exirel		Beseige (+3A)		Beseige (+3A)				
Other Control	CM, DBM	ICW, smCL	ICW, smCL	ICW, CL, OT	ICW, CL, OT	ICW, CL	ICW, CL			ICW, CL, OT, FB							

Difficult growing season

Month	At Planti ng		Ju	l y		August				September			October					
Week		1	2	3	4	5	6	7	7 8 9			12	13	14	15	16		
DBM		Ge	nerati	ion 1		Generation 2 & 3?					Generation 3 & 4?				4?			
MOA	MOA 1 MOA 2					MC	A 3	MC)A 4		MC	A 5	MOA 6					
Insectici de App		Spray 1	Spray 2	Spray 3	Spray 4	Spray 5	Spray 6	Spray 7			Spray 9	Sp:	•	:	Spray 11			
IRAC	28	11A	11A	5	5	6	6	28	2	8	22 A	22	A.		3 A			
Trade name		Agree, Xentari , Dipel	Agree, Xentari, Dipel	Radiant	Radiant	Proclaim	Proclaim	Coragen Beseige (+3A) Exirel	eige (+3A)		Avaunt	Avaunt		Avaunt Avaunt		Warrior, etc.		etc.
Other Control	CM, DBM	ICW, smCL	ICW, smCL	ICW, CL, OT	ICW, CL, OT	ICW, CL	ICW, CL	ICW, CL, OT, FB	T, ICW, CL, OT, FB				ICW, CL	ICW	, CL	ICW,	smCL, C	T, FB

For More Information

Christy Hoepting cah59@cornell.edu 585-721-6953

Elisabeth Hodgdon eh528@cornell.edu 518-650-5323

New Factsheet Available

May 20

NEW Crop Rotation Recommendations for Swede Midge

Christy Hoepting and Sarah Vande Brake, CCE Cornell Vegetable Program

A spatiotemporal rotation of 500 feet for 2.5 to 3 months can be highly effective for managing swede midge

INTRODUCTION

Swede midge is difficult to control on small farms

Swede midge (Contarinia nasturtii) is an invasive insect that can seriously damage plants in the family Brassicaceae, which includes broccoli, cauliflower, cabbage, kohlrabi, and kale. Larval feeding on brassica crops results in distorted plant growth, corky scarring, and/or blind heads, which can reduce marketable yield and quality (Fig. 1). Swede midge control is challenging on small-scale and organic farms, where season-long production of brassica crops in close proximity is common. This continuous supply of host plants allows swede midge populations to explode. Research shows that economic damage to crops can be avoided by "crashing" the swede midge population. New crop rotation recommendations provide a feasible population management strategy for some small farms.

in New York, swede midge has 4-5 overlapping generations that are active from mid-May to late-October. Each spring, the tiny (2 mm) gnat-like adult flies emerge from overwintered pupale in the soil. Females have a days to find a mate and then a suitable host on which to lay their microscopic eggs. Eggs batch within 3-8 days and then the lanvae (2-3 mm) feed deep within the growing tips of brassica plants for 7-26 days before dropping to the soil, where they pupate for 7-49 days or overwinter. About 26 of overwintering pupee remain in the soil for at least 2 years.

Figure 1. Damage caused by swede midge larval feeding leaf puckering and brow scarring along leaf margins in broccoli (left), and brown corky scarring destraing kohlnabi head unmarketable (night). Photos: C. Hoepting, CCE Connell Vegetable Program.

FAR AND LONG CROP ROTATION OPTIONS

Preliminary crop rotation recommendation

Preliminary crop rotation recommendations advised growers to rotate away from brassics crops by at least 3,000 feet for a minimum of 3 years. This was a conservative recommendation based on the knowledge that swede midge are weak filers and can persist in soil for at least 2 years. Implementing such far and long spatiotemporal rotations is impractical for most small farms.

To examine whether a reduced spatiotemporal rotation scheme could effectively mitigate swede midge damage, Cornell Vegetable Program researchers conducted an extensive project, which monitored swede midge populations and crop damage on seven small-scale organic farms in New York from 2015 to 2017. This work resulted in new, less restrictive crop rotation recommendations that center on reducing economic damage by depriving adult swede midge of succeptible host plants during peak periods of activity.

NEW Crop Rosation Recommendations for Swede Midge | 1

For More Information

Diagnostic video

Podcast - March 24, 2020

Hoepting Research Reports

Sustainable Agriculture Research & Education Grants and Education to Advance Innovations in Sustainable Agriculture

Grants Project Reports Learning Center SARE In Your State Events Newsroom About SARE

Final report for ONE15-237

Optimizing management of a new invasive species, swede midge, on small-scale organic farms

Final report for ONE16-262

Optimizing management of a new invasive species, swede midge, on small-scale organic farms: Part II

THANK YOU

LOOK AT YOUR WORKSHEET...

What's in your toolbox?

add in 2021

Whether you've been using integrated pest management practices for years, or are just getting started, you're probably already implementing some IPM strategies. But there's always room for more IPM! What are you doing? What do you want to add?

		Specific IPM practices	5	
General areas for IPM	What I'm already doing	What I'd I	ike to add	
What you plant, where, and how				

Based on this presentation, write down some IPM practices you'd like to

(continued on next page)

WORKS CITED:

- https://www.missouribotanicalgarden.org/gardens-gardening/your-garden/help-for-the-home-gardener/advice-tips-resources/pests-and-problems/insects/caterpillars/imported-cabbageworm.aspx
- https://gardeningsolutions.ifas.ufl.edu/plants/edibles/vegetables/cole-cropconfusion.html
- https://quickstats.nass.usda.gov/results/44E04DF2-1314-3A0A-95CC-7BF2DCAE73B6
- https://extension.unh.edu/resource/cabbage-looper-fact-sheet
- http://entnemdept.ufl.edu/creatures/veg/leaf/diamondback_moth.htm
- http://entnemdept.ufl.edu/creatures/veg/leaf/imported_cabbageworm.htm
- http://entnemdept.ufl.edu/creatures/veg/leaf/cabbage_looper.htm
- https://extension.umd.edu/hgic/topics/imported-cabbageworm-vegetables

